
Zero+ Intelligence Models in Financial Markets

The traditional paradigm in economics is one of
rational utility maximizing agents. Recognizing limi-
tations in human cognition, economists have increas-
ingly explored models in which agents have bounded
rationality.

While no one would dispute the fact that agents in
financial markets behave strategically however there
are some problems where other factors may be more
important. Previous work along these lines includes
Becker’s work, where it showed that random agent
behavior and a budget constraint are sufficient to
guarantee the proper slope of supply and demand
curves. Gode and Sunder demonstrated that if one
replaces the students in a standard classroom eco-
nomics experiment by zero-intelligence agents with a
budget constraint they perform surprisingly well.

Recently a model of a continuous double auction it
has been developed [2]. This model based on the sim-
ple assumption that agents, subject to constraints im-
posed by current prices, place orders to buy or sell at
random. In these two pages I am going to show how
for certain problems such an approach, also known as
“zero intelligence”, can make surprisingly good quan-
titative predictions. A validation of this model has
been done using real data from the London Stock Ex-
change.
The continuous double auction is the most widely
used method of price formation in modern finan-
cial markets. The auction is called “double” because
traders can submit orders both to buy and to sell and
it is called “continuous” because they can do so at any
time. An order that does not cross the opposite best
price, and so does not result in an immediate transac-
tion, is called a limit order (LO). An order that does
cross the opposite best price, and thus causes an im-
mediate transaction, is called a market order (MO).
Buy and sell limit orders accumulate in their respec-
tive queues, while buy and sell MOs cause transac-
tions that remove LOs. A LO can also be removed
from its queue by being canceled. The lowest selling
price offered at any point in time is called the best
ask, a(t), and the highest buying price the best bid,
b(t). The bid-ask spread s(t) ≡ a(t) − b(t) measures
the gap between them.

The model assumes that two types of agents place
orders randomly according to independent Poisson
processes, as shown in Fig. 1. Impatient agents
place MOs randomly with a Poisson rate of µ shares
per unit time. Patient agents, in contrast, place
LOs randomly in both price and time. Buy LOs
are placed uniformly anywhere in the semi-infinite
interval −∞ < p < a(t), sell LOs anywhere in
b(t) < p < ∞. Both buying and selling LOs arrive
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Figure 1: A random process model of the continuous dou-
ble auction. Stored LOs are shown stacked along the price
axis. New LOs are visualized as randomly falling down,
and new buy orders as randomly “falling up”. Limit or-
ders can be removed spontaneously or they can be re-
moved by MOs of the opposite type.

with same Poisson rate density α, which is measured
in shares per unit price per unit time. The log-price p
is continuous and is independent of arrival time. Both
limit and market orders are of constant size σ (mea-
sured in shares). Queued LOs are canceled according
to a Poisson process with a fixed rate δ per unit time.
All of these processes are independent except for in-
direct coupling through the boundary condition: as
new orders arrive they may alter the best prices a(t)
and b(t), which in turn changes the boundary condi-
tions for subsequent limit order placement. It is this
feedback between order placement and price diffusion
that makes this model interesting. The mean value
of the spread predicted based on a mean field theory
analysis of the model is

ŝ = (µ/α)f(σδ/µ). (1)

The scaling law above is reasonable in that it predicts
that the spread increases when there are more MOs
or cancellations (which remove stored LOs), and de-
creases with more LOs (which fill the spread in more
quickly).

Another prediction of the model concerns the price
diffusion rate, which drives the volatility of prices and
is the primary determinant of financial risk. If one
assumes that prices make a random walk, then the
diffusion rate measures the size and frequency of its
increments. Numerical experiments indicate that the
short term price diffusion rate is to a very good ap-
proximation given by the formula

D̂ = kµ5/2δ1/2σ−1/2α−2, (2)
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where k is a constant. This formula is reasonable in
that it predicts that volatility increases with LO re-
moval (either by MOs or by cancellations) and de-
creases with LO placement. The model is tested
cross-sectionally over eleven stocks [1]. For each stock
its average order flow rates are measured and the pre-
dicted average spread σ̂ and diffusion rate D̂ for that
stock are calculated using equations 1 and 2. These
predicted values are compared to the actual values of
the spread σ̄ and diffusion rate D̄ measured from the
data. The comparison is done via linear regressions
of the predicted against the actual values.

Measurement of the parameters µ and σ is straight-
forward, however a problem occurs in measuring the
parameters α and δ because in the real data LO
placement and cancellation are concentrated near the
best prices . An auxiliary assumption can be made:
the order placement is uniform inside a price window
around the best prices. To test this hypothesis a re-
gression of the form log s̄ = A log ŝ + Bis performed.
In Fig. 2 the predictions are compared to the actual
values. The least squares regression, shown also in
Fig. 2, gives A = 0.99 ± 0.10 and B = 0.06 ± 0.29
with an R2 = 0.96, proving that the model explains
most of the variance.
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Figure 2: Regressions of predicted values based on or-
der flow using equation 1 versus actual values for the log
spread (left) and for the log diffusion rate (right).

As for the spread, the predicted price diffusion rate
based on order flows is compared to the actual price
diffusion rate D̄i for each stock averaged over the 21
month period (Fig. 2).

The market impact is important because it pro-
vides a probe of the supply and demand functions in
the order book. When a MO of size ω arrives, if it
removes all LOs at the best bid or ask it will imme-
diately change the midpoint price m ≡ (a + b)/2.
We define the average market impact function as
φ(ω) = E[∆p|ω] where ∆p is the difference between
the price just before and after a MO. Normalizing the
price shift and the order size by appropriate dimen-
sional scale factors based on the daily order flow rates,
the collapse of the market impact can be plotted on
an universal curve. This curve (Fig.3) reveals an uni-
versal supply and demand function. The market im-
pact collapse illustrates that the non-dimensional co-
ordinates dictated by the model provide substantial
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Figure 3: The average market impact as a function of the
mean order size. The price differences and order sizes for
each transaction are normalized by the non-dimensional
coordinates.
explanatory power and reveals a universal supply and
demand function. These results are remarkable be-
cause the underlying model largely drops agent ra-
tionality. At the same time the model fails to cap-
tures many important features of the real markets like
market efficiency. A way to improve the model is to
incrementally add new assumptions about agents be-
havior. It has been shown that liquidity variations are
driving the large price fluctuations. The distribution
of large price changes merely reflects the distribution
of gaps in the limit order book.

I’m working on a model of the limit order place-
ment process that is micro founded and generates a
power low in LOs gap distribution. This project is
motivated by some empirical evidences. Psychologi-
cal experiments suggested that most people do not
use exponential weights in considering future util-
ity and a power law provides a better fit to the
empirical data. For example in a world of uncer-
tain interest rates, the loss of utility with time must
be weighted by the distribution of interest rates:
u(t) =

∫
P (r)e−rtdr. If P(r) is distributed as a log-

normal then u(t) is a power low. Having non-zero-
intelligence agents trying to maximize the expected
utility under a non exponential discounting rate can
be the explanations of the very important power low
in the stock returns.
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